The Impact of Root Temperature on Photosynthesis and Isoprene Emission in Three Different Plant Species
نویسندگان
چکیده
Most of the perennial plant species, particularly trees, emit volatile organic compounds (BVOCs) such as isoprene and monoterpenes, which in several cases have been demonstrated to protect against thermal shock and more generally against oxidative stress. In this paper, we show the response of three strong isoprene emitter species, namely, Phragmites australis, Populus x euramericana, and Salix phylicifolia exposed to artificial or natural warming of the root system in different conditions. This aspect has not been investigated so far while it is well known that warming the air around a plant stimulates considerably isoprene emission, as also shown in this paper. In the green house experiments where the warming corresponded with high stress conditions, as confirmed by higher activities of the main antioxidant enzymes, we found that isoprene uncoupled from photosynthesis at a certain stage of the warming treatment and that even when photosynthesis approached to zero isoprene emission was still ongoing. In the field experiment, in a typical cold-limited environment, warming did not affect isoprene emission whereas it increased significantly CO₂ assimilation. Our findings suggest that the increase of isoprene could be a good marker of heat stress, whereas the decrease of isoprene a good marker of accelerated foliar senescence, two hypotheses that should be better investigated in the future.
منابع مشابه
Isoprene increases thermotolerance of fosmidomycin-fed leaves.
Isoprene is synthesized and emitted in large amounts by a number of plant species, especially oak (Quercus sp.) and aspen (Populus sp.) trees. It has been suggested that isoprene improves thermotolerance by helping photosynthesis cope with high temperature. However, the evidence for the thermotolerance hypothesis is indirect and one of three methods used to support this hypothesis has recently ...
متن کاملPhotosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model
We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar– Ball–Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, int...
متن کاملRelationships among Isoprene Emission Rate, Photosynthesis, and Isoprene Synthase Activity as Influenced by Temperature.
Isoprene emissions from the leaves of velvet bean (Mucuna pruriens L. var utilis) plants exhibited temperature response patterns that were dependent on the plant's growth temperature. Plants grown in a warm regimen (34/28 degrees C, day/night) exhibited a temperature optimum for emissions of 45 degrees C, whereas those grown in a cooler regimen (26/20 degrees C, day/night) exhibited an optimum ...
متن کاملInfluenced by Temperature1
Isoprene emissions from the leaves of velvet bean (Mucuna pruriens L. var utilis) plants exhibited temperature response pattems that were dependent on the plant's growth temperature. Plants grown in a warm regimen (34/280C, day/night) exhibited a temperature optimum for emissions of 450C, whereas those grown in a cooler regimen (26/200C, day/night) exhibited an optimum of 40°C. Several previous...
متن کاملField measurements of isoprene emission from trees in response to temperature and light.
The atmospheric hydrocarbon budget is important for predicting ozone episodes and the effects of pollution mitigation strategies. Isoprene emission from plants is an important part of the atmospheric hydrocarbon budget. We measured isoprene emission capacity at the bottom, middle, and top of the canopies of a white oak (Quercus alba L.) tree and a red oak (Quercus rubra L.) tree growing adjacen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012